NTPsec

crane3.services.mbix.ca

Report generated: Sun Jan 11 07:53:02 2026 UTC
Start Time: Sat Jan 10 07:53:02 2026 UTC
End Time: Sun Jan 11 07:53:02 2026 UTC
Report Period: 1.0 days

Top   Daily Stats   Weekly Stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -42.898 -28.789 -22.006 -3.695 31.092 42.110 66.094 53.098 70.899 16.488 -0.036 µs -3.342 7.293
Local Clock Frequency Offset 77.482 77.529 77.605 77.912 78.163 78.211 78.245 0.558 0.683 0.171 77.902 ppm 9.351e+07 4.244e+10

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 8.093 11.650 14.371 21.728 30.240 34.282 41.578 15.869 22.632 4.830 21.932 µs 55.31 239.7

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 3.397 4.478 5.360 7.894 10.476 11.733 14.942 5.116 7.255 1.559 7.900 ppb 79.66 378.6

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -42.898 -28.789 -22.006 -3.695 31.092 42.110 66.094 53.098 70.899 16.488 -0.036 µs -3.342 7.293

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 77.482 77.529 77.605 77.912 78.163 78.211 78.245 0.558 0.683 0.171 77.902 ppm 9.351e+07 4.244e+10
Temp LM0 33.000 34.000 35.000 36.000 38.000 39.000 39.000 3.000 5.000 1.003 36.391 °C
Temp LM1 29.000 29.000 30.000 32.000 34.000 35.000 35.000 4.000 6.000 1.471 32.183 °C
Temp LM10 31.000 31.000 32.000 33.000 35.000 35.000 36.000 3.000 4.000 0.942 33.447 °C
Temp LM2 28.000 29.000 29.000 31.000 33.000 34.000 34.000 4.000 5.000 1.157 30.954 °C
Temp LM3 33.000 34.000 35.000 36.000 38.000 39.000 40.000 3.000 5.000 1.009 36.419 °C
Temp LM4 31.000 31.000 31.000 33.000 35.000 35.000 36.000 4.000 4.000 1.167 33.310 °C
Temp LM5 59.000 59.000 59.000 60.000 62.000 62.000 62.000 3.000 3.000 0.796 60.433 °C
Temp LM6 38.000 38.000 39.000 40.000 42.000 43.000 43.000 3.000 5.000 0.935 40.454 °C
Temp LM7 35.000 36.000 36.000 39.000 41.000 41.000 41.000 5.000 5.000 1.286 38.662 °C
Temp LM8 37.000 37.000 38.000 40.000 41.000 42.000 43.000 3.000 5.000 1.104 39.771 °C
Temp LM9 35.000 35.000 36.000 37.000 39.000 39.000 40.000 3.000 4.000 0.991 37.356 °C
Temp ZONE0 38.000 39.000 39.000 41.000 42.000 42.000 43.000 3.000 3.000 0.936 40.511 °C
Temp ZONE1 34.000 34.000 35.000 37.000 39.000 40.000 40.000 4.000 6.000 1.234 36.771 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 132.246.11.227

peer offset 132.246.11.227 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 132.246.11.227 1.164 1.176 1.187 1.228 1.266 1.288 1.682 0.079 0.112 0.036 1.229 ms 3.775e+04 1.269e+06

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 142.3.100.2

peer offset 142.3.100.2 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 142.3.100.2 -78.143 -70.060 -55.791 -14.833 30.566 52.560 74.454 86.357 122.620 25.482 -13.705 µs -7.976 21.28

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2600:2600::199 (ntp2.wiktel.com)

peer offset 2600:2600::199 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2600:2600::199 (ntp2.wiktel.com) 313.709 318.845 335.982 369.293 400.145 407.890 416.281 64.163 89.045 19.300 368.646 µs 5985 1.093e+05

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2602:fde5:2a::13

peer offset 2602:fde5:2a::13 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2602:fde5:2a::13 2.031 2.037 2.045 2.079 2.123 2.134 2.143 0.078 0.098 0.023 2.082 ms 7.441e+05 6.744e+07

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) -4.254 -4.254 -4.115 -3.887 -3.573 -3.512 -3.512 0.543 0.741 0.169 -3.872 ms -1.385e+04 3.337e+05

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -4.336 -4.263 -4.141 -3.862 -3.299 -3.191 -3.075 0.841 1.073 0.250 -3.800 ms -4293 7.027e+04

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2607:f388::123:1 (ntp1.doit.wisc.edu)

peer offset 2607:f388::123:1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2607:f388::123:1 (ntp1.doit.wisc.edu) -561.142 -541.540 -516.561 -446.235 -388.696 -339.499 -311.972 127.865 202.041 38.645 -447.824 µs -2032 2.606e+04

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset PPS(0)

peer offset PPS(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset PPS(0) -42.899 -28.790 -22.007 -3.696 31.093 42.111 66.095 53.100 70.901 16.489 -0.036 µs -3.342 7.293

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 132.246.11.227

peer jitter 132.246.11.227 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 132.246.11.227 0.000 0.011 0.017 0.050 1.251 1.571 1.863 1.234 1.560 0.416 0.291 ms 0.7711 3.485

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 142.3.100.2

peer jitter 142.3.100.2 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 142.3.100.2 0.012 0.015 0.021 0.041 0.096 174.190 174.210 0.074 174.174 17.472 1.819 ms 6.358 66.81

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2600:2600::199 (ntp2.wiktel.com)

peer jitter 2600:2600::199 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2600:2600::199 (ntp2.wiktel.com) 6.093 8.480 11.853 23.395 44.268 61.000 83.988 32.415 52.520 10.713 25.414 µs 8.124 29.72

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2602:fde5:2a::13

peer jitter 2602:fde5:2a::13 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2602:fde5:2a::13 7.189 8.768 12.282 23.595 47.953 56.502 58.382 35.671 47.734 10.763 26.167 µs 8.042 24.33

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 11.237 11.237 21.135 47.232 116.627 321.251 321.251 95.492 310.014 40.704 59.268 µs 4.682 26.39

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 11.921 14.689 20.359 48.548 159.871 206.649 353.437 139.512 191.960 46.567 64.947 µs 3.332 14.3

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2607:f388::123:1 (ntp1.doit.wisc.edu)

peer jitter 2607:f388::123:1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2607:f388::123:1 (ntp1.doit.wisc.edu) 10.109 11.771 14.202 29.578 56.767 629.014 634.031 42.565 617.243 61.924 37.336 µs 7.789 73.42

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter PPS(0)

peer jitter PPS(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter PPS(0) 2.394 6.471 9.267 20.631 39.166 49.586 71.380 29.899 43.115 9.110 22.086 µs 8.041 25.46

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 77.482 77.529 77.605 77.912 78.163 78.211 78.245 0.558 0.683 0.171 77.902 ppm 9.351e+07 4.244e+10
Local Clock Time Offset -42.898 -28.789 -22.006 -3.695 31.092 42.110 66.094 53.098 70.899 16.488 -0.036 µs -3.342 7.293
Local RMS Frequency Jitter 3.397 4.478 5.360 7.894 10.476 11.733 14.942 5.116 7.255 1.559 7.900 ppb 79.66 378.6
Local RMS Time Jitter 8.093 11.650 14.371 21.728 30.240 34.282 41.578 15.869 22.632 4.830 21.932 µs 55.31 239.7
Server Jitter 132.246.11.227 0.000 0.011 0.017 0.050 1.251 1.571 1.863 1.234 1.560 0.416 0.291 ms 0.7711 3.485
Server Jitter 142.3.100.2 0.012 0.015 0.021 0.041 0.096 174.190 174.210 0.074 174.174 17.472 1.819 ms 6.358 66.81
Server Jitter 2600:2600::199 (ntp2.wiktel.com) 6.093 8.480 11.853 23.395 44.268 61.000 83.988 32.415 52.520 10.713 25.414 µs 8.124 29.72
Server Jitter 2602:fde5:2a::13 7.189 8.768 12.282 23.595 47.953 56.502 58.382 35.671 47.734 10.763 26.167 µs 8.042 24.33
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 11.237 11.237 21.135 47.232 116.627 321.251 321.251 95.492 310.014 40.704 59.268 µs 4.682 26.39
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 11.921 14.689 20.359 48.548 159.871 206.649 353.437 139.512 191.960 46.567 64.947 µs 3.332 14.3
Server Jitter 2607:f388::123:1 (ntp1.doit.wisc.edu) 10.109 11.771 14.202 29.578 56.767 629.014 634.031 42.565 617.243 61.924 37.336 µs 7.789 73.42
Server Jitter PPS(0) 2.394 6.471 9.267 20.631 39.166 49.586 71.380 29.899 43.115 9.110 22.086 µs 8.041 25.46
Server Offset 132.246.11.227 1.164 1.176 1.187 1.228 1.266 1.288 1.682 0.079 0.112 0.036 1.229 ms 3.775e+04 1.269e+06
Server Offset 142.3.100.2 -78.143 -70.060 -55.791 -14.833 30.566 52.560 74.454 86.357 122.620 25.482 -13.705 µs -7.976 21.28
Server Offset 2600:2600::199 (ntp2.wiktel.com) 313.709 318.845 335.982 369.293 400.145 407.890 416.281 64.163 89.045 19.300 368.646 µs 5985 1.093e+05
Server Offset 2602:fde5:2a::13 2.031 2.037 2.045 2.079 2.123 2.134 2.143 0.078 0.098 0.023 2.082 ms 7.441e+05 6.744e+07
Server Offset 2606:4700:f1::1 (time.cloudflare.com) -4.254 -4.254 -4.115 -3.887 -3.573 -3.512 -3.512 0.543 0.741 0.169 -3.872 ms -1.385e+04 3.337e+05
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -4.336 -4.263 -4.141 -3.862 -3.299 -3.191 -3.075 0.841 1.073 0.250 -3.800 ms -4293 7.027e+04
Server Offset 2607:f388::123:1 (ntp1.doit.wisc.edu) -561.142 -541.540 -516.561 -446.235 -388.696 -339.499 -311.972 127.865 202.041 38.645 -447.824 µs -2032 2.606e+04
Server Offset PPS(0) -42.899 -28.790 -22.007 -3.696 31.093 42.111 66.095 53.100 70.901 16.489 -0.036 µs -3.342 7.293
Temp LM0 33.000 34.000 35.000 36.000 38.000 39.000 39.000 3.000 5.000 1.003 36.391 °C
Temp LM1 29.000 29.000 30.000 32.000 34.000 35.000 35.000 4.000 6.000 1.471 32.183 °C
Temp LM10 31.000 31.000 32.000 33.000 35.000 35.000 36.000 3.000 4.000 0.942 33.447 °C
Temp LM2 28.000 29.000 29.000 31.000 33.000 34.000 34.000 4.000 5.000 1.157 30.954 °C
Temp LM3 33.000 34.000 35.000 36.000 38.000 39.000 40.000 3.000 5.000 1.009 36.419 °C
Temp LM4 31.000 31.000 31.000 33.000 35.000 35.000 36.000 4.000 4.000 1.167 33.310 °C
Temp LM5 59.000 59.000 59.000 60.000 62.000 62.000 62.000 3.000 3.000 0.796 60.433 °C
Temp LM6 38.000 38.000 39.000 40.000 42.000 43.000 43.000 3.000 5.000 0.935 40.454 °C
Temp LM7 35.000 36.000 36.000 39.000 41.000 41.000 41.000 5.000 5.000 1.286 38.662 °C
Temp LM8 37.000 37.000 38.000 40.000 41.000 42.000 43.000 3.000 5.000 1.104 39.771 °C
Temp LM9 35.000 35.000 36.000 37.000 39.000 39.000 40.000 3.000 4.000 0.991 37.356 °C
Temp ZONE0 38.000 39.000 39.000 41.000 42.000 42.000 43.000 3.000 3.000 0.936 40.511 °C
Temp ZONE1 34.000 34.000 35.000 37.000 39.000 40.000 40.000 4.000 6.000 1.234 36.771 °C
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!